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Materials innovation is important for decarbonization, and 
artificial intelligence (AI) can play a major role in accelerating it. 
This chapter examines how improved materials can reduce 
emissions and enable carbon management, as well as specific 
areas in which AI can help. 

The search for novel materials with useful properties has been 

central to technology innovation for centuries. Ancient Romans 

developed novel concrete for bridges, aquifers and other 

structures, some of which have survived for millennia.1 In the 

modern era, Thomas Edison’s discovery of carbon filament for 

electric light bulbs in 1879 enabled these bulbs to last for long 

enough to be practical, leading to a fundamental transformation 

of lighting technologies and the eventual phase-out of whale oil 

and kerosene lamps.2 Similarly, Charles Goodyear’s discovery of a 

process to vulcanize rubber in the 1830s helped overcome the 

limitations of natural rubber, which melts in heat and cracks in 

cold. Goodyear (among others) worked for years to address this 

challenge, eventually discovering how to cross-link the long 

molecules in natural rubber to create a much stronger and more 

durable material.3  

These examples illustrate that most materials innovation 

throughout history has relied on insight, experimentation and 

serendipity. Edison’s search for an appropriate filament 

depended on general scientific insight and exhaustive material 

testing: his laboratory tried thousands of carbonized plants 

before finally identifying one that worked well. Goodyear’s 

discovery of vulcanization was largely due to a stroke of luck. 

Many other key materials—including carbon steel, ceramics, 

catalysts and polymers—have followed similar paths. Without a 

systematic, quantitative framework for determining how a material’s properties depend on its 

chemical and structural nature, there is only one feasible approach: innovators must laboriously find 

or synthesize many different materials (or many variations of the same basic material with slight 

modifications) and exhaustively test them. This is costly and time-consuming and creates a barrier to 

technological progress. 

  

 
Roman concrete enabled extraordinary 

construction projects, including the Pantheon, 

the world’s oldest building still in active use. 

 
Thomas Edison’s discovery of carbon filament 

for electric light bulbs in 1879 fundamentally 

transformed lighting. 
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A. Materials innovation in Climate Technologies 

The performance of many clean-energy technologies is 

limited by the properties of key materials, including 

photovoltaics (PVs), semiconductors, magnets, catalysts, 

polymers, alloys and composites. Identifying new materials 

with improved properties could enable these technologies 

to achieve higher energy efficiency, lower costs, greater 

performance, longer service lifetime, higher energy 

densities and many other desirable characteristics. This in 

turn would allow these technologies to provide identical or 

improved services with lower net greenhouse gas emissions 

(GHG).  

Lithium-ion batteries are a good example of a technology 

that was greatly improved through discovery of novel 

materials. Specifically, the cathode, anode and electrolyte 

materials in modern lithium-ion batteries are all the result 

of extensive fundamental and applied research. This 

includes identification of lithium cobalt oxide (LiCoO2), 

lithium iron phosphate (LiFePO4) and other cathode 

materials beginning in the 1970s, as well as identification of 

graphite for anodes and a variety of liquid and solid 

materials for the electrolyte.4 Before these materials were 

identified and successfully integrated into full systems, the 

performance of batteries was much worse than today 

(lower energy density and total capacity). The cost of 

building battery-enabled technologies was correspondingly 

higher. Advances in these key materials therefore improved 

performance and thus brought batteries into new applications, such as electric vehicles (EVs) and 

bulk storage of renewable electricity. Research into advanced battery materials is still ongoing and 

may open a path to even higher-performing batteries, such as all-solid-state5 and sodium-ion 

technologies.6 

Advanced materials also play important roles in carbon capture and management technologies. 

Properties such as CO2-binding energy and kinetics, as well as long-term stability, determine the 

overall performance of materials used as sorbents and solvents for carbon capture and direct air 

capture (DAC) applications.7 Similar properties also determine the performance of catalyst materials 

in applications such as electrocatalytic reduction of CO2.8 Even in the case of CO2 transport for 

sequestration or utilization, material properties influence the durability and overall performance of 

bulk transport systems. 9  

 

 

 
Materials innovation enabled the development 

of lithium-ion batteries for electric vehicles 

(EVs), long-duration grid storage and other 

low-carbon technologies. 

 
Solar photovoltaic (PV) systems are the 

product of years of materials innovation and 

optimization. 
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Box 13-1  

INNOVATION IN MATERIALS SYNTHESIS 
In some cases, a well-known material with superior properties could potentially overcome limitations to 
a technology’s performance, but no practical method is known for producing this material. One such 
case is the general illumination LED bulb, now in common use. Although LEDs were originally invented 
in the 1960s, they were based on a material (gallium arsenide, GaAs) that can only emit red light. 
Researchers knew that gallium nitride (GaN) and zinc selenide (ZnSe) could enable white LEDs that 
could be used for general applications like building and street lighting. However, it was not until the 
development of the two-flow MOCVD (metal organic chemical vapor deposition) reactor in the 1990s 
that GaN crystals could be reliably produced.10  

 
This development led directly to commercial, white-colored LED lights with  
dramatically higher energy efficiency than incandescent and fluorescent  
bulbs, which are now gradually being replaced. Notably, although LEDs  
have reduced the energy intensity of lighting significantly, global CO2  
emissions from lighting have not fallen because the demand for more  
lighting has offset these efficiency gains.11  

 

 

There are many other use cases of 

advanced materials that are, or 

would be, valuable in enabling 

technologies to reduce GHG 

emissions in energy, industrial, 

transportation and other 

applications. These include solar 

PVs,12 wind turbine blades,13 

hydrogen storage,14 fuel-cell 

electrodes and electrolytes,15 

lightweight alloys and composites 

for vehicles,16 low-GWP (global 

warming potential) refrigerants,17 thermal-barrier coatings,18 desiccants for advanced HVAC,19 high-

voltage direct-current (HVDC) power transmission,20 high-temperature superconductors,21 and high-

strength permanent magnets (used in everything from wind turbines to fusion reactors).22 
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Innovative materials are important for enabling point-source carbon capture systems and CO2 removal systems, 

such as this direct air capture (DAC) plant in Iceland (photo credit: Julio Friedmann). 

B. Computational Materials Development 

Key scientific advances in the 1960s changed the way materials are designed and discovered. New 

computational methods finally enabled researchers to go beyond simply relying on intuition and 

incremental experiments; these methods allowed them to directly calculate the properties of new 

materials just from their chemical makeup and structure (“ab initio”). For example, following the 

discovery of the first high-temperature superconductor (which was largely an Edisonian process 

guided by intuition), other researchers quickly applied computational modeling to better understand 

the superconducting effect. This approach led to the discovery of other, better high-temperature 

superconductors.23,24 Ab initio modeling also led to materials discoveries for batteries, hydrogen 

storage, thermoelectrics, nuclear fuels and semiconductors.25 

As a result, materials research has increasingly shifted to computation. Advances in computing 

power, algorithms and data science have accelerated this trend. Governments have funded broadly 

integrated materials science projects that leverage information-science tools to share advanced 

algorithms, provide compute resources and disseminate the results of computations and 

experiments in increasingly massive materials property databases. Some examples include The 

Materials Project coordinated by U.C. Berkeley,26 the NOMAD database hosted by Humboldt 

University of Berlin,27 and the MateriApps project hosted by the University of Tokyo.28 These projects 
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contain hundreds of thousands to millions of entries on material properties and provide methods for 

users to run numerical calculations of materials properties on high-performance computers. The 

scale of materials datasets is a consequence of the enormous number of stable materials that could 

theoretically exist by the laws of chemistry and physics (estimated to be more than the number of 

atoms on Earth29), even though only a tiny fraction of these have actually been synthesized. 

Notably, modern computational materials science consumes enormous computing resources. In 

recent years, roughly one-third of available supercomputing has been dedicated to these materials-

related calculations.30 

C. Applications of AI in Materials Discovery and Design 

The complex nature of materials property predictions and the 

enormous amount of available data have sparked interest in 

using AI methods in computational materials science for several 

years. One key area where AI has been applied is directly 

predicting properties of new materials without performing full ab 

initio calculations. This approach trains AI models on large 

databases of previously computed and/or tested materials to 

learn quantitative relationships between atomic structure and 

relevant properties. This can save enormous compute time and 

cost. A recent application of this was the use of graph neural 

networks trained on data from the Materials Project to screen 31 

million hypothetically possible crystal structures to identify 

roughly two thousand of them with promising properties for 

further investigation.31 This AI approach can provide major 

benefits by down-selecting a small number of candidate materials 

for more intensive, high-accuracy studies. An important recent 

variation of this approach combined AI algorithms with ab initio 

calculations to generate and then filter potential new inorganic 

crystals, discovering more than 380,000 new, previously 

unknown stable materials.32  

This type of materials prediction and screening relies on large datasets, so ongoing efforts to develop 

AI-ready massive materials datasets are crucial. The recently released Open DAC 2023 dataset 

containing millions of high-accuracy calculations of the properties of thousands of sorbent materials 

  
Yttrium barium copper oxide (YBCO) was one 

of the first high-temperature superconductors 

to be discovered. Image was created using 

published crystallographic information and the 

Crystalmaker® program. Author: Gadolinist 
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for DAC is a good example of this kind of dataset, enabling multiple teams to train AI models for 

more extensive and focused rapid materials discovery for DAC.33 

While ab initio calculations will probably remain the most accurate method of predicting materials 

properties for some time, AI methods have begun to produce impressive results compared to first-

principles calculations. For example, an artificial neural network was recently developed to predict 

key characteristics of the surfaces of binary and ternary oxides, materials that may be useful as PVs 

and photocatalysts.34 AI can also be used to accelerate experimental characterization of materials, 

leading to much more efficient use of limited experimental resources. For example, x-ray diffraction 

(XRD), which measures the pattern of diffraction of x-rays that hit a sample, is a common technique 

for examining the crystal structure of materials (such as changes in cathode phases during battery 

charging). AI models trained on large experimental datasets of diffraction patterns and material 

crystal structures can directly interpret new XRD data in real time, dramatically speeding up 

experiments.35  

An enormous amount of prior materials research is available in scientific journal articles. Researchers 

typically survey the scientific literature before approaching a new problem, but the large number of 

relevant articles (often tens of thousands for a single material subtype) makes this process extremely 

difficult and prone to error and bias. AI in the form of natural language processing (NLP) can be used 

to extract information from these research articles and structure it systematically, known as 

“knowledge discovery.”36,37 NLP models trained on non-technical language struggle to handle 

scientific text, but materials-research-specific language models with better performance have begun 

to emerge.38 With the broad introduction of large language models (LLMs) in 2022, progress in 

materials-science knowledge discovery has begun to accelerate dramatically.39  

The complexity of advanced materials means that the process used to synthesize (produce) them 

must be tightly controlled. Small changes in process parameters can result in different, less useful 

materials, so identifying and optimizing synthesis parameters is crucial. AI-based knowledge-

discovery techniques have been successfully applied to the materials research literature to identify 

precise synthesis steps for key materials from thousands of research papers. For example, 

researchers used a neural-network-based NLP method to search 22,000 journal articles and extract 

precise synthesis parameters for optimized titania nanotubes.40 

Researchers are increasingly working to combine these use cases in integrated “autonomous 

materials” laboratories. These laboratories combine novel material formulations discovered by AI 

with physical synthesis guided by specific steps that other AI models summarize from the scientific 

literature. One recent example allowed the direct synthesis and testing of 41 novel compounds over 

17 continuous days of operation.41 However, designing these autonomous materials laboratories is 

challenging and requires new thinking about reproducibility and robust handling of various types of 

errors that can occur in real-world experimental settings.42 Ultimately, these types of laboratories 

should aim to achieve a positive feedback loop that integrates AI-guided theoretical materials design, 

automated chemical synthesis of physical samples, and automated materials characterization.43  

The use of generative AI is also growing rapidly within materials discovery and design. Generative AI 

can propose new hypothetical materials that are not currently in any materials database and may be 
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dramatically different from those that are. This is particularly powerful for the “inverse design” 

problem of materials, which starts with a desired property and uses an AI method to propose 

possible materials structures that may have it. As an example, researchers used a generative 

adversarial network (GAN) to propose 23 entirely novel structures made from three atoms 

(magnesium, manganese and oxygen) that displayed excellent properties as photoanodes for water 

splitting.44 Similarly, researchers recently used a generative AI method to rapidly design and partially 

validate novel materials for carbon capture, identifying six candidates with very high capacity for 

further testing.45 

D. Barriers 

Some important progress has already been made in applying AI techniques to computational 

materials discovery and design. Expanded research budgets, including additional funding for AI-

specific applications in materials science, would make even more progress possible.  

While high-speed internet connections have partly equalized access to materials datasets and high-

performance computing across the globe (with notable exceptions), the same is not true for physical 

materials-testing facilities. Real breakthroughs will ultimately depend on coupling AI-enabled 

computational materials discovery with high-throughput synthesis and testing/characterization. 

The vast and growing network of materials databases also poses a challenge for progress. Better 

integration of these datasets, including better harmonization of their metadata, is needed. This 

would improve the ability of researchers to train models and query materials properties across the 

full spectrum of existing data, avoiding silos and misinterpretations due to conflicting definitions. 

Explicitly encouraging inclusion of null results or failed experiments on materials—an uncommon 

step in most scientific research—could broaden the value of these datasets and provide more 

balanced training data for AI models. Governments have difficulty acting on these issues unilaterally 

since the global materials-science community must align on data exchange and metadata protocols. 

However, international standards bodies and scientific societies can lead the way through 

cooperative standards-setting efforts, potentially with government funding for support.46 

At a system level, the full life-cycle emissions implications of advanced materials are dependent on 

both the key property of interest (e.g., PV efficiency, CO2-adsorption capacity, etc.) and the emissions 

caused by synthesizing (producing) the material. Unfortunately, relatively little attention has been 

paid to synthesis emissions when discovering or optimizing novel materials, even though different 

synthesis pathways can have significantly different emissions.47 More use of AI tools is needed in 

predicting GHG emissions that would be caused by synthesizing novel materials, preferably in parallel 

with materials discovery and design efforts. This application of AI would allow better understanding 

of the complete life-cycle emissions that would result from using a novel material in energy and 

related technologies. 

Finally, advances in accelerating materials discovery and design with AI depend on improving the AI 

knowledge and skills of the materials-science workforce. Key issues in AI, such as understanding the 

applicability of trained AI models to problems outside the domain of their training data and 

quantifying the uncertainty of model predictions, are challenging and likely unfamiliar to 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 13: Materials Innovation - 13-9 

  

 

conventionally trained materials scientists.46 AI tools should therefore be incorporated as a central 

part of materials-science education, and training should also be offered to AI experts who are 

interested in applying their skills to developing novel materials. These education and training efforts 

could take place within traditional materials-science curricula or as part of external courses that can 

ensure the most recent models, numerical algorithms and datasets are presented and continually 

updated.  

E. Risks 

Powerful AI-enabled tools and techniques developed for materials innovation could be used to 

advance materials that enable highly emitting activities. For example, these tools could discover new 

high-temperature alloys for gas turbines48 or stronger, more durable alloys for drill bits used in oil 

and gas drilling.49 This means that advanced AI models for materials innovation may be “dual use” 

and lead to the development of high-performance materials that lower the cost of emissions-

intensive technologies, undermining momentum toward decarbonization. Policy guardrails are 

unlikely to be sufficient to address this issue. However, because many emerging decarbonized 

technologies depend on high-performance materials (as noted above), it may be the case that 

advanced materials-innovation capabilities are, on balance, more beneficial for low-emitting 

technologies. 

Separately, the pursuit of AI-enabled materials innovation at scale will require resources, and the 

appropriate allocation of research focus areas may be more challenging than in traditional materials-

discovery contexts. In particular, the inherent scaling advantages of AI may make it optimal to 

concentrate research efforts and data into a smaller number of larger research groups than is 

currently the case. This concentration could lead to “neglected” areas of materials innovation that 

fall outside of the increasingly centralized research agendas. Reasonable efforts to maintain a 

diversity of research teams leveraging AI models for materials innovation that are focused on 

enabling low-emissions technologies should be sufficient to address this risk. 
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F. Recommendations 

1. National governments should increase R&D budgets for AI-enabled materials discovery, with a 

focus on holistic design considerations that include full life-cycle GHG emissions. Support should 

also be made available for creating new automated and partly autonomous materials-testing 

laboratories in a variety of locations around the world. By combining AI and robotics, these 

facilities could unlock broad global access to rapid iterations in materials design and testing, 

reducing the challenges of participating in advanced materials development for researchers in 

resource-limited countries.50  

2. Private companies should engage directly with AI-guided materials-discovery efforts by clarifying 

manufacturability constraints and offering embedded emissions guidelines. This could also include 

articulating specific materials classes of interest for commercially relevant low-carbon 

technologies and issuing benchmarks and/or targets for key performance thresholds. 

3. National governments, academia and private companies should collaborate to develop and 

release (or expand existing) AI-ready datasets of material properties that can be used by other 

research teams to train high-performance models. This effort should use standard data formats 

and be at least loosely coupled to materials-synthesis and -testing facilities to validate results. 

4. National governments and academia should support increased education in AI techniques as part 

of materials-science and related degree programs. 

5. Scientific publishers should ensure that research publications are fully compatible with AI-guided 

research synthesis methods, including retroactively converting historical publications.  
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